
1

Automated Flight Dynamics Product Generation for the EOS AM-1 Spacecraft

Carla Matusow
Robert Wiegand

National Aeronautics and Space Administration
Goddard Space Flight Center

Code 583
Greenbelt, MD 20771

USA
Carla.Matusow@gsfc.nasa.gov
Robert.Wiegand@gsfc.nasa.gov

Abstract

Because of the complexity of the AM-1 spacecraft,
the mission operations center requires more than 80
distinct flight dynamics products (reports). To create
these products, the flight operations team will use a
variety of modified commercial and National
Aeronautics and Space Administration (NASA)
developed flight dynamics software applications.
Unfortunately, this means routine product generation
requires flight dynamics expertise, requires skills in
using each software application, takes several hours of
operator interaction, and has many opportunities for
user errors.

To address these issues, we (the flight dynamics team)
developed automation software, called AutoProducts,
which provides all the necessary coordination and
communication among the various flight dynamics
applications. AutoProducts autonomously retrieves
files; sequences, initializes, and executes applications;
and delivers the final products to the appropriate
customers. This eliminates the need for flight dynamics
expertise and knowledge of each application for routine
product generation. Also, it virtually eliminates the
potential for error and routine product generation needs
no human-computer interaction.

Although AutoProducts required a significant effort to
develop because of the complexity of the interfaces
involved, its use will provide significant time and cost
savings through reduced operator time and maximum
product reliability. User satisfaction is significantly
improved with AutoProducts and flight dynamics
experts have more time to perform valuable analysis
work. In addition, most of the AutoProducts code can
be easily reused for future missions.

Key words: automation, autonomous operations,
commercial-off-the-shelf, flight dynamics.

Introduction

As part of National Aeronautics and Space
Administration’s (NASA’s) Earth Science Enterprise,
the Earth Observing System (EOS) AM-1 spacecraft is
designed to monitor long-term global environmental
changes. Using the spacecraft flight operations system,
EOS Mission Operations System (EMOS), the flight
operators send commands and receive telemetry from
AM-1 (Figure 1). The AM-1 Flight Dynamics System
(FDS) provides important information to EMOS, which
is used to create spacecraft commands and plan mission
events. The flight dynamics information is packaged
into more than 80 distinct products (reports).
Specifically, the operators use FDS to:

• monitor spacecraft attitude and orbit in real-time
• provide spacecraft commanding information
• support anomaly resolution for spacecraft

navigation, maneuver, and attitude systems
• perform spacecraft maneuver planning
• analyze spacecraft on-board orbit computations
• predict potential spacecraft communication times
• provide spacecraft science instrument planning

aids

Figure 1: AM-1 Flight Operations Ground System
Components

2

Because the mission-required flight dynamics
information is so diverse, FDS consists of several
integrated commercial and custom software
applications. Without any automation software, FDS
was extremely cumbersome, requiring flight dynamics
expertise and knowledge of several software packages
and hardware platforms. Routine product generation
was a highly interactive process that took hours to
complete and had the potential for many user errors.

Problem description

In an effort to reduce software development costs and
shorten development time, the flight dynamics
organization at NASA regularly evaluates the use of
commercial software packages. Therefore, FDS
incorporates Satellite Tool Kit (STK) by Analytical
Graphics, Inc., FreeFlyer by AI Solutions, Inc., and
MATLAB by The Math Works, Inc to meet the AM-1
requirements (Figure 2). However, all the commercial
software needed customization. Even after customizing
the commercial software, we still needed to write some
unique software to meet requirements specific to AM-1.

EMOS

Institutional
Files

EMOS

TGSS

FOSFormatter

EMOS
Ephemeris

Utility

MATLAB

FreeFlyer

STK

STK
Ephemeris

Utility

mass &
area

ephemeris

state vector

reports

reports

formatted
products

formatted
ephemeris

formatted
products

ephemeris &
reference files

telemetry

FDS

reports

Figure 2: FDS Architecture Diagram Without
AutoProducts

The STK package allows users to compile custom
software modules with the commercially available STK
modules to expand its functionality. We wrote several
custom modules (in C) to produce acquisition data,
lunar beta angles, lunar eclipse times, solar terminator,
solar eclipse, solar mid day, spacecraft shadow times,
and minimum/maximum latitude times – AM-1 specific
functionality that wasn’t available in the commercial
package. We use built-in functionality to generate
fields of view, viewing times, orbital events, solar and
lunar azimuth and elevation angles, and altitude reports.
STK uses predicted ephemeris files generated by
FreeFlyer to produce its reports.

The FreeFlyer package provides an object oriented
scripting language to allow users to perform tasks. We
wrote several complex FreeFlyer scripts to produce
maneuver planning products. We use relatively simple

FreeFlyer scripts for predicted ephemeris, state vectors,
and geometrical event reports (e.g., Brouwer-Lyddane
elements, solar beta angles, and local sun time).
FreeFlyer uses institutional reference files and a state
vector from the spacecraft telemetry to produce its
reports.

The MATLAB package requires users to write scripts
using MATLAB library routines to perform tasks. We
wrote several custom MATLAB modules to create a
variety of spacecraft attitude related products. Our
customized MATLAB modules use telemetry files to
create the attitude data and produce several products in
the EMOS format.

AM-1 has on-board navigation software, called the
Tracking and Data Relay Satellite (TDRS) On-board
Navigation System (TONS). A copy of the TONS flight
software, implemented on a Sun Microsystems
workstation, as well as some supporting software, is
used to analyze spacecraft on-board orbit computations
and performance. This integrated set of software is
called the TONS Ground Support System (TGSS).
TGSS uses telemetry files to validate orbit vectors from
the spacecraft. FreeFlyer needs this information to
generate its reports.

We modified existing NASA-developed ephemeris
file reformatting software (Ephemeris Utilities) to
produce the specific formats required by STK and
EMOS.

Each product has precise data format requirements.
Because FreeFlyer and STK cannot meet the formats
required by EMOS, we wrote a custom application
using Perl, called FOSFormatter, to reformat reports
into the formats EMOS requires. Nearly all products
must be reformatted by FOSFormatter before being
delivered to the customers.

Every day, the flight operations team is required to
generate 30 different flight dynamics products. Under
special circumstances, even more products must be
generated. From the flight operators’ perspective,
generating the daily products is a time-consuming task.
The instructions to generate these products take 18
pages! Integrating several software applications into the
FDS raises several operational concerns:

• Routine product generation requires knowledge
of multiple applications executing on different
hardware platforms. Generating daily products
requires knowledge of UNIX, Windows NT,
TGSS, STK, FreeFlyer, MATLAB,
FOSFormatter, and the AM-1 Ephemeris
Utilities.

• Generating products is a highly interactive
process requiring a user to interact with each
application multiple times to generate each
product.

3

• Routine product generation requires several
hours to complete. Although each daily product
can be generated in 5-40 minutes, the entire
process takes 6-8 hours because each product
must be generated individually and serially – the
first product must be completed before the next
product can be started.

• User interaction with each application introduces
the potential for errors, since users are required
to manually enter filenames and input
parameters as well as sequence and execute
applications. Even with 18 pages of detailed
instructions for daily product generation,
operators commonly make several mistakes.

• Generating products requires some level of flight
dynamics expertise to determine appropriate
inputs and sequencing. Operators need to
understand the system fairly well in order for
product generation to make sense and prevent
critical mistakes.

During FDS development these issues became
apparent when developers and flight dynamics analysts
began generating sample products for testing purposes.
It quickly became clear that using several different
software applications was unreasonable and some sort
of automation was necessary to make the system easier
to use.

Solution Description

To address these issues, we developed a software
application called AutoProducts. The purpose of
AutoProducts is to capture operations procedures.
AutoProducts performs routine product generation
without human-computer interaction. In addition, it acts
as a single graphical user interface for all the flight
dynamics software applications to allow users to
generate unique groups of non-routine products easily.

AutoProducts is executed from a single hardware
platform and provides all necessary coordination and
communication among the various flight dynamics
software applications. AutoProducts autonomously
retrieves necessary files, sequences and executes
applications (on the same platform and on other
hardware platforms) with correct input parameters, and
delivers the final flight dynamics products to the
appropriate customers. Although AutoProducts will
normally generate pre-programmed sets of routine
products, its graphical user interface allows for
configuration of customized and one-of-a-kind products.
Additionally, AutoProducts has been designed as a
mission-independent tool, and can be reconfigured to
support other missions or incorporate new flight
dynamics software applications. AutoProducts is

capable of generating the appropriate products
automatically at pre-determined time intervals for the
life of the mission.

AutoProducts Framework

AutoProducts is an extensible framework. The key to
understanding AutoProducts is the concept of Actions
(Figure 3). An Action holds data that parameterizes a
task that AutoProducts carrys out. Support for various
kinds of Actions are implemented in modules that are
loaded into AutoProducts at run time. For a particular
kind of Action, the Action Execution module verifies
and performs the Action. The Action Editor module
displays and allows the user to modify the Action’s
data.

Contexts
Main User
Interface
Window

Interactive

Loaded
Editor

Modules

Loaded
Execution
Modules

Loaded
Actions

execute
edit

Figure 3: AutoProducts Framework

Actions fit nicely into the object oriented
programming model. An Action has a Type, which
defines how it implements the Action interface. Every
Action understands the validate, execute, dependencies,
and edit messages. The validate message requests a
consistency check on the Action’s data. The execute
message carries out the Action with its current data
(configuration). The dependencies message requests a
list of the Actions that this Action is dependent upon.
When AutoProducts runs interactively, the edit message
presents an Action Editor to the user. Through the
Action Editor, users customize the Action’s data.

An example of a kind of Action is a List Action which
groups and orders other Actions. Its data consists of a
sequence of Actions and a flag for each indicating
whether or not it is currently enabled. When a List is
executed, it executes each of its enabled elements.
Users enable or disable Actions within the List and add
or remove Actions to the List through the List Editor.

An Action executes within a Context. The Context
preserves state across Action executions. Actions
communicate with each other by manipulating the

4

Context. The Action may have effects outside of
AutoProducts (e.g. running another application), but
coordinating these effects is handled through the
Context. The Context maintains a stack of currently
executing Actions. Contexts allow AutoProducts to
perform Actions concurrently. The user interface
allows creating a new Context and selecting the Context
in which Actions will execute.

Actions and Types are maintained in a Registry
(Figure 4). Loading an Action Execution module
defines a new Type. The Type maps the validate,
execute, dependencies, and edit messages to functions in
the loaded modules. Actions (instances of Types) are
loaded from files. The Registry verifies the Actions it
loads with the validate and dependencies messages.
Actions are also verified when the user attempts to
commit an update (made with an Action Editor) to the
Registry.

Context

Types

Registry

Actions
Loaded
Action
Editors

Loaded
Action

Executors

Actions
File

ModuleLoad
Module

ActionIO

Figure 4: AutoProducts Actions and Types

Each Context has its own Registry of Actions and
Types. This is necessary since Actions may change in
one Context (due to user interactions) while another
Context is active. For Actions to safely execute
concurrently, the Action execution module must
maintain state in the Context and use the
Context-unique identifier in external interactions.
However, AutoProducts cannot guarantee that the
application it is interacting with can perform the
requested tasks in parallel.

Some Types of Actions have general application. A
List Action groups a set of Actions in a particular
sequence. A Test Action executes another Action and
compares the results to the expected results. An Eval
Action provides a hook to the implementation language.

The following are other key parts of the framework.
The Messaging module implements the protocol for
sending and receiving messages within AutoProducts.
The Context service creates and commands existing
Contexts (e.g. tells a Context to execute an Action).

The Scheduling service schedules Actions for execution
in a particular Context at a later time. The Reporting
module collects and distributes status, warning, and
error messages.

The AutoProducts framework allows modules to be
plugged in when necessary. Adding support for a new
Type of Action is simply a matter of implementing the
Action interface. This might extend AutoProducts
capabilities by interfacing with another software
application. Implementing an Action Editor would
support interactive operation. Different Action Editors,
with more or less flexibility, can be plugged in for
different users. Modules that do not directly support
Actions can be loaded as well, for example, the module
that provides support for AM-1 naming conventions.

When run interactively, AutoProducts presents a
Perl/Tk based user interface. Figure 5 shows the main
user interface window that presents the list of available
Actions. When the user requests to edit an Action, an
Editor for that Action is opened (Figure 6). That Editor
may open other windows (Figure 7). All of the Editors
in the user interface populate a window having a
common shell for consistency.

Figure 5: AutoProducts Main User Interface Window
With AM-1 Actions Loaded

5

Figure 6: Sample List Action Editor Window

Figure 7: Sample Action Editor Window

AM-1 Specific Implementation

To support the AM-1 mission, we developed a
number of Action modules. We expect that many of
these modules will be useful in future AutoProducts
applications.

Supporting an external tool is dependent on the
interface it provides. We were fortunate to have source
code for many of the tools we need to support, simple
interfaces to others (e.g., many UNIX utilities), and
scripting languages and/or good vendor support for
others. Trying to get events into an application that
only provided a graphical interface would be a problem.

For AM-1, AutoProducts needs to interface with
several software applications. We created Actions to
work with each application: STK, FreeFlyer, MATLAB,
FOSFormatter, and the Ephemeris Utilities. STK
provides an external interface with its Connect module.
AutoProducts communicates with STK/Connect via
sockets. FreeFlyer provides its own scripting language.
We annotated the AM-1 FreeFlyer scripts with hooks to
allow automation. An operating system service on the
FreeFlyer platform receives commands from
AutoProducts to set up and execute FreeFlyer scripts.
MATLAB also has a scripting language. We have a
family of Actions that prepare MATLAB scripts for

execution. Since FOSFormatter was written in Perl, its
modules are easily loaded into AutoProducts at
run-time. The Ephemeris Utilities are FORTRAN
executables with Tcl/Tk user interfaces. AutoProducts
communicates with the Ephemeris Utilities via standard
UNIX input and output streams.

In addition to the application interfaces, we need
infrastructure Actions to coordinate the product
generation process. An FTP Action retrieves or delivers
files using File Transfer Protocol (FTP). A Reference
Action moves or renames a file. An Archive Action
accesses or maintains the product archive. An Ephref
Action selects and validates an ephemeris file for a
satellite. A TimePeriod Action selects the timespan for
products. A TDRSSlot Action selects the operational
TDRS to use for product generation.

Implementation Notes

We implemented AutoProducts under HP-UX 10.20
using Perl 5. We chose HP-UX because it supports the
largest subset of the software applications AutoProducts
needs to coordinate. Perl 5 has strong module support
and makes it easy to dynamically load modules. Also,
Perl 5 has an extensive library and a good interface with
the operating system.

Contexts are currently mapped onto processes. We
intend to have the option of mapping Contexts onto
threads when the Perl support for threads stabilizes.
Threads offer two advantages. First, threads will be
faster: there is some synchronization cost, but moving
an object between queues in memory is much faster
than serializing the object and transferring it across a
pipe or socket. Second, threads will reduce resource
usage since, for example, loaded modules can be shared.

It is possible to implement a non-Perl/Tk based set of
editors for AutoProducts to load. For example, we
could build a family of editors based on curses or
editors that provide a World Wide Web (WWW)
interface to AutoProducts.

Example

One tool that AutoProducts interfaces with is the
Magnetic Field Prediction Utility (MFPU). Upon
request, FDS provides EMOS with Three-Axis
Magnetometer (TAM) fault detection isolation and
recovery (FDIR) predict tables. These tables (created
by MFPU) are required for on-board fault detection
during attitude maneuvers. MFPU is implemented as a
MATLAB application with its own user interface. The
procedure to produce and deliver this table requires
several pages of instructions. However, all the

6

information necessary to perform the procedure can be
derived from the product start time.

Within AutoProducts, we create a List Action called
Produce TAM FDIR Predict Table. This List Action
contains several Actions. First the Product Time Period
Action specifies the start time of the product. This is
the only place the user needs to specify information.
Then the AM-1 Period Ephemeris Reference Action
locates the AM 1 ephemeris file that covers that time
period. Next, the MATLAB MFPU Action:

• derives the MFPU parameters from its data and
the Context;

• builds a file containing statements to initialize
and invoke the function that generates the
product; and

• executes that file.
The FTP Products to EMOS Action delivers the

product to EMOS. Lastly, the Archive Products Action
archives the product. Using AutoProducts, the
instructions for generating the TAM FDIR Predict Table
are reduced to a few mouse clicks and selecting a start
time.

Conclusion

AutoProducts greatly reduces many of the concerns
associated with the flight dynamics product generation:

• Users can be trained to use a single application
and graphical user interface to generate
products. Groups of non-routine products can
be generated with a few minutes of human-
computer interaction using a single user
interface. Users require knowledge of HP-UX
and AutoProducts only.

• Routine product generation is performed
autonomously. No interaction is necessary,
allowing the operator to do other tasks during
product generation.

• Routine product generation processing time has
been significantly reduced. Daily product
generation takes less than an hour and is solely
dependent on the flight dynamics software
applications’ processing time.

• Since input parameters, filenames, and
application sequences are preprogrammed for
routine product generation, user interaction error
is eliminated.

• No flight dynamics expertise is required for
routine product generation. Autonomous
operation reduces the level of expertise needed
for flight operations.

Over the life of the AM-1 mission we expect
AutoProducts to save at least 6 hours of operator time
every day.

While EMOS is still being tested, flight dynamics
analysts are frequently asked to provide sample
products. With AutoProducts, generating sample
products requires less lead-time and has a significantly
smaller impact on the analysts’ other work. They used
to have to devote days to generating sample products –
hours of human-computer interaction. With
AutoProducts, only a few minutes of human-computer
interaction is needed. Saving one analyst 24 hours of
work to prepare sample products for each of 20
remaining tests before AM-1 launches, means an overall
savings of at least 480 hours of analysts’ time by using
AutoProducts.

In addition, training users to use AutoProducts instead
of all the flight dynamics software applications is easier.
It requires less time and users gain a better
understanding of the overall system.

Since users began using AutoProducts (even with
limited capabilities), we have received positive feedback
about the ease-of use and efficiency of FDS.

Although AutoProducts required a significant effort to
develop because of the complexity of the interfaces
involved, its use will provide significant cost savings
through reduced operator time and maximum product
reliability. In addition, user satisfaction is significantly
improved and flight dynamics experts have more time to
perform valuable analysis work. AutoProducts helps
both analysts and developers do their jobs more
efficiently and effectively.

7

Glossary of Terms and Acronyms

curses character based windowing library
EMOS EOS Mission Operations System
EOS Earth Observing System
FDIR fault detection isolation and recovery
FDS AM-1 Flight Dynamics System
FORTRAN formula translation, a programming

language
FTP file transfer protocol
HP-UX Hewlett Packard’s flavor of UNIX
MATLAB MATrix LABoratory by The Math

Works, Inc.
MFPU Magnetic Field Prediction Utility
NASA National Aeronautics and Space

Administration
Perl Practical Expression and Report

Language
Perl/Tk Perl Toolkit
STK Satellite Tool Kit
TAM Three-Axis Magnetometer
Tcl/Tk Tool Command Language Toolkit
TDRS Tracking and Data Relay Satellite
TGSS TONS Ground Support System
TONS TDRS On-board Navigation System
UNIX a multi-user operating system
Windows NT a Microsoft operating system

